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ROC curve analysis is often applied to measure the diagnostic accuracy of a biomarker.The analysis results in two gains: diagnostic
accuracy of the biomarker and the optimal cut-point value.There aremanymethods proposed in the literature to obtain the optimal
cut-point value. In this study, a new approach, alternative to these methods, is proposed. The proposed approach is based on the
value of the area under the ROC curve.Thismethod defines the optimal cut-point value as the valuewhose sensitivity and specificity
are the closest to the value of the area under the ROC curve and the absolute value of the difference between the sensitivity and
specificity values is minimum.This approach is very practical. In this study, the results of the proposed method are compared with
those of the standard approaches, by using simulated data with different distribution and homogeneity conditions as well as a real
data. According to the simulation results, the use of the proposed method is advised for finding the true cut-point.

1. Introduction

The ROC curve is a mapping of the sensitivity versus 1 −
specificity for all possible values of the cut-point between
cases and controls. To measure the diagnostic ability of a
biomarker, it is common to use summary measures such as
the area under the ROC curve (AUC) and/or the partial area
under the ROC curve (pAUC) [1]. A biomarker with AUC =
1 discriminates individuals perfectly as diseased or healthy.
Meanwhile, an AUC = 0.5 means that there is no apparent
distributional difference between the biomarker values of the
two groups [2].

ROC analysis provides two main outcomes: the diagnos-
tic accuracy of the test and the optimal cut-point value for the
test. Cut-points dichotomize the test values, so this provides
the diagnosis (diseased or not). The identification of the cut-
point value requires a simultaneous assessment of sensitivity
and specificity [3]. A cut-point will be referred to as optimal
when the point classifies most of the individuals correctly
[4, 5].

AUC, sensitivity, and specificity values are useful for
the evaluation of a marker; however they do not specify
“optimal” cut-points directly. In the literature, related to the
subject, there are many approaches using both sensitivity

and specificity for cut-point selection [4–9]. One of the
commonly used method is the Youden index (𝐽) method
[5]. This method defines the optimal cut-point as the point
maximizing the Youden function which is the difference
between true positive rate and false positive rate over all
possible cut-point values [6, 7]. Another approach is known
as the point closest-to-(0, 1) corner in the ROC plane (ER)
which defines the optimal cut-point as the point minimizing
the Euclidean distance between the ROC curve and the
(0, 1) point [4]. A third approach is based on the maximum
achievable value of the chi-square statistic (min𝑃) which is
driven using the cross-tabulations of true disease status and
categorized new variables that separate the biomarker into
two categories according to all possible cut-point values [8].
A more recent approach was proposed by Liu [9], which
defines the optimal cut-point as the point maximizing the
product of sensitivity and specificity (CZ). In the literature,
there are studies comparing optimal metrics derived from
the sensitivity, specificity, agreement, and distance [10, 11]. In
these studies, it is generally recommended that researchers
should select one that is most clinically relevant.

In this study, a new approach is proposed for the identi-
fication of the optimal cut-point value in ROC analysis. The
approach is based on the area under the ROC curve (AUC),
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sensitivity, and specificity values. It defines the optimal cut-
point value as the point minimizing the summation of abso-
lute values of the differences between AUC and sensitivity
andAUC and specificity provided that the difference between
sensitivity and specificity is minimum.

In the following section, first the background method-
ologies of previous methods are summarized, and, then, the
proposed method is introduced. In Section 3, in order to
compare the performance of the previous methods with that
of the proposed one, generated data under the assumption
of normal distribution and gamma distribution models for
the biomarker are used. Then, in Section 4, using data from
a real-world study of heart-failure patients [12], the cut-
points for pulse pressure, plasma sodium, LVEF, and heart
rate in prediction of mortality are calculated by applying the
proposed and the previous methods. Finally, in Section 5,
conclusions are given.

2. Previous Methods and the Proposed Method

2.1. Minimum 𝑃 Value Approach (min𝑃). Let𝑋 be a contin-
uous biomarker that is assumed to be predictive of an event

𝐸 (i.e., 𝐸 = 1 for diseased or 𝐸 = 0 for not diseased). At any
given possible cut-point 𝑐 of𝑋, sensitivity (Se) and specificity
(Sp) values are as follows:

Se (𝑐) = 𝑃 (𝑋 > 𝑐 | 𝐸 = 1) ,
Sp (𝑐) = 𝑃 (𝑋 ≤ 𝑐 | 𝐸 = 0) . (1)

Cut-point 𝑐 separates the data into two groups which forms a
2 × 2 table, as shown in Table 1.

The minimum 𝑃 value approach was proposed by Miller
and Siegmund [8] and defines the optimal point as cut-point
𝑐min𝑃 that maximizes the standard chi-square statistic with
one degree of freedom:

𝜒21 (𝑐) = 𝑁 (𝑠V − 𝑢𝑟)2
(𝑠 + 𝑟) (𝑢 + V) (𝑠 + 𝑢) (𝑟 + V) , (2)

where 𝑁 = 𝑠 + 𝑟 + 𝑢 + V. As it was shown by Rota and
Antolini [11], it can be also written in terms of classification
probabilities:

𝜒21 (𝑐) =
(Se (𝑐) + Sp (𝑐) − 1)2

(((𝑢 + V) Se (𝑐) + (𝑠 + 𝑟) (1 − Sp (𝑐))) /𝑁) (1 − ((𝑢 + V) Se (𝑐) + (𝑠 + 𝑟) (1 − Sp (𝑐))) /𝑁) (1/ (𝑢 + V) + 1/ (𝑠 + 𝑟)) . (3)

2.2. Youden Index (𝐽). The Youden index (𝐽) is a measure
for evaluating the biomarker effectiveness. This measure was
first introduced to the medical literature by Youden [5]. 𝐽 is a
function of Se(𝑐) and Sp(𝑐), such that

𝐽 (𝑐) = {Se (𝑐) + Sp (𝑐) − 1} = {Se (𝑐) − (1 − Sp (𝑐))} (4)

over all cut-points 𝑐; 𝑐𝐽 denotes the cut-point corresponding
to 𝐽. When the value of 𝐽 is maximum, 𝑐𝐽 is the “optimal” cut-
point value [6, 7].

2.3. The Closest to (0, 1) Criteria (ER). In this criteria, the
“optimal” cut-point is defined as the point closest to the point
(0, 1) on the ROC curve [3, 4].

ER (𝑐) = (√(1 − Se (𝑐))2 + (1 − Sp (𝑐))2) . (5)

Mathematically, the point 𝑐ER minimizing the ER(𝑐) function
is called the “optimal” cut-point value.

2.4. Concordance Probability Method (CZ). The concordance
probability method proposed by Liu [9] defines the optimal
cut-point as the point maximizing the product of sensitivity
and specificity.

CZ (𝑐) = Se (𝑐) ∗ Sp (𝑐) . (6)

This product gets value between 0 and 1. The concordance
probability of dichotomized measure at cut-point 𝑐 can be
expressed as the area of a rectangle associated with the ROC
curve. Cut-point 𝑐CZ maximizing CZ(𝑐) actually maximizes
the area of the rectangle [9].

2.5. The Proposed Method: Index of Union (IU). Perkins and
Schisterman [4] stated that the “optimal” cut-point should be
chosen as the point which classifies most of the individuals
correctly and thus least of them incorrectly. From this point
of view, in this study, the Index of Unionmethod is proposed.
This method provides an “optimal” cut-point which has
maximum sensitivity and specificity values at the same time.
In order to find the highest sensitivity and specificity values
at the same time, the AUC value is taken as the starting value
of them. For example, let AUC value be 0.8. The next step is
to look for a cut-point from the coordinates of ROC whose
sensitivity and specificity values are simultaneously so close
or equal to 0.8.This cut-point is then defined as the “optimal”
cut-point. The above criteria correspond to the following
equation:

IU (𝑐) = (|Se (𝑐) − AUC| + Sp (𝑐) − AUC) . (7)

The cut-point 𝑐IU, which minimizes the IU(𝑐) function and
the |Se(𝑐) − Sp(𝑐)| difference, will be the “optimal” cut-point
value.

In other words, the cut-point 𝑐IU defined by the IU
method should satisfy two conditions: (1) sensitivity and
specificity obtained at this cut-point should be simultane-
ously close to the AUC value; (2) the difference between
sensitivity and specificity obtained at this cut-point should
be minimum. The second condition is not compulsory, but
it is an essential condition when multiple cut-points satisfy
the equation.

In order to illustrate how the IU method defines the
“optimal” cut-point, the values obtained from an artificial
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Table 1

𝑋 ≤ 𝑐 𝑋 > 𝑐
𝐸 = 0 𝑠 𝑟
𝐸 = 1 𝑢 V

Table 2: Some of the cut-points with their sensitivity and specificity
values obtained from artificial data.

Cut-point Specificity Sensitivity
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3.095 0.44 0.92
2.986 0.48 0.92
2.727 0.52 0.92
2.527 0.56 0.92
2.478 0.60 0.92
2.416 0.64 0.92
2.331 0.68 0.92
2.284 0.72 0.92
2.262 0.76 0.92
2.243 0.80 0.92
2.191 0.84 0.92
2.079 0.88 0.92
1.985 0.92 0.92
1.944 0.92 0.88
1.897 0.92 0.84
1.836 0.92 0.80
1.741 0.92 0.76
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

data are used. Some of the cut-points (with their sensitivity
and specificity values) provided by the artificial data are given
in Table 2. In this example, the AUC value is calculated as
0.918. For the sake of simplicity, instead of 1 − specificity
values, specificity values are given in the table. By using
IU method, one can easily find that sensitivity (0.92) and
specificity (0.92) values of the cut-point 1.985 are the nearest
ones to the AUC value. Since also the difference between
these two values is minimum, this cut-point will be called the
“optimal” cut-point by the IU method.

However, it should be noted that choosing such a cut-
point as the “optimal” cut-point may sometimes fail. For
example, let Se(𝑐) = Sp(𝑐) = AUC = 0.8. Then, the IU(𝑐)
statistic given in (7) will be 0 and also the difference between
Se(𝑐) and Sp(𝑐) will be 0. Thus according to the definition
of optimality given in the IU method, cut-point 𝑐 will be
accepted as the “optimal” cut-point. However, if there is a
point 𝑐∗ for which Se(𝑐∗) = 0.82 and Sp(𝑐∗) = 0.80, then the
total misclassification rate will be 0.38 (which is smaller than
that of the point 𝑐, i.e., 0.40). Hence, cut-point 𝑐∗ is a better
optimized point than cut-point 𝑐, based on the definition of
optimality given by Perkins and Schisterman [4].

Geometrically, the idea behind the IU method is very
similar to the idea behind the ER method. As it can be seen
in Figure 1, the IU method also tries to find the closest point
to a point, that is, the point (1 − AUC, AUC). In the ER
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Figure 1: The receiver operator characteristic curve for pulse
pressure in the prediction of cardiovascular death [12].

method, this point is taken as (0, 1). However, instead of
using the Euclidean distance as in the ER method, the IU
method uses the absolute differences between the diagnostic
accuracy measures and the AUC value. More specifically,
the IU method searches for the point that minimizes the
half perimeter of the ABCD rectangle seen in Figure 1.
This rectangle is constructed by connecting the intersections
points of the lines of 𝑥 = 1 − AUC, 𝑦 = AUC, 𝑥 = 1 − Sp(𝑐),
and 𝑦 = Se(𝑐).

3. Simulation Study

As it was shown by Rota and Antolini [11] although some of
these methods are mathematically related, they do not nec-
essarily identify the same true cut-point. That is, depending
on the design of the study (balanced or unbalanced), the
methodsmay identify different cut-points. According to their
results, in the balanced homoscedastic scenario, the methods
identified the same point; in the remaining scenarios (i.e.,
unbalanced homoscedastic and balanced/unbalanced het-
eroscedastic scenarios), the methods identified different cut-
points. These results emphasize the importance of correctly
defining the true cut-point in all possible scenarios.

Let us assume that a specific biomarker (𝑋) in diseased
and nondiseased populations is normally distributed, 𝑋1 ∼𝑁 (𝜇1, 𝜎1 = 1) for diseased subjects and𝑋0 ∼ 𝑁 (0, 𝜎0 = 1)
for nondiseased subjects. Under these assumptions, sensitiv-
ity and specificity can be written as

Se (𝑐) = 𝑃 (𝑋1 ≥ 𝑐) = Φ (𝜇1 − 𝑐) ,
Sp (𝑐) = 𝑃 (𝑋0 ≤ 𝑐) = Φ (𝑐) ,

(8)

where Φ denotes the standard normal distribution function.
Theoptimal cut-point occurs at the intersection of the normal
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Figure 2:The empirically estimated objective functions IU(𝑐) under
different underlying distributions: light to dark colors represent the
scenarios with the classification accuracies from poor to high one.
The homoscedastic gamma distribution scenario with a balanced
design (𝑛0 = 𝑛1 = 100) is represented.

probability density functions of diseased and nondiseased
subjects (i.e., 𝑐opt = 𝜇1/2) [7, 13]. For example, if 𝜇1 is taken
as {0.51, 1.05, 1.68, 2.56}, the corresponding true cut-points
will be 𝑐opt = {0.25, 0.52, 0.84, 1.28} [11, 13].These values of 𝜇1
guarantee a wide variety of classification accuracies, ranging
from a poor to a high one [7, 11, 13]. The identification of
the true theoretical cut-point for the IU method under this
scenario is given in the Appendix.

Now assume that𝑋 is gamma distributedwith the follow-
ing parameters: 𝑋1 ∼ 𝐺 (𝛼1 = 2.5, 𝛽1) for diseased subjects
and 𝑋0 ∼ 𝐺 (𝛼0 = 1.5, 𝛽0 = 1) for nondiseased subjects. If,
for instance, 𝛽1 is taken as {0.79, 1.22, 1.97, 3.82}, the corre-
sponding cut-points for each method will be different; that
is, for min𝑃 approach, 𝑐min𝑃 = {0.80, 1.73, 2.54, 3.51}, for
Youden index, 𝑐𝐽 = {1.12, 1.79, 2.45, 3.42}, for the concor-
dance probability, 𝑐CZ = {1.35, 1.81, 2.41, 3.38}, and, for the
point closest-to-(0, 1) corner, 𝑐ER = {1.38, 1.82, 2.36, 3.24}
[11]. For the Index of Union, the corresponding cut-points are
estimated by the empirical estimation method given in Liu’s
work [9] as 𝑐IU = {1.42, 1.78, 2.41, 3.30} (Figure 2).

In order to compare the performance of the cut-point
selection methods with the performance of the method
proposed in this study, a simulation study is conducted with
different scenarios. These scenarios are the same as the ones
given in Rota and Antolini’s work [11]. The first scenario is
normal homoscedastic scenario with balanced design where
all of the methods theoretically identify the same true cut-
point.The second one is the nonbalanced normal case, where
all of the methods except the min𝑃 approach identify the
same cut-point. The last scenario is gamma case where all of
the methods identify different cut-points.

In all scenarios, 1000 samples were generated with sample
sizes 50, 100, and 200 for each group and with sample size
𝑛1 = 50, 𝑛0 = 100; 𝑛1 = 50, 𝑛0 = 150; and 𝑛1 = 50, 𝑛0 = 200

(𝑛1 is the number of diseased subjects and 𝑛0 is the number
of nondiseased subjects).

For each sample, the optimal cut-points 𝑐min𝑃, 𝑐𝐽, 𝑐CZ, 𝑐ER,
and 𝑐IU for the minimum 𝑃 value, the Youden index, the con-
cordance probability, the point closest-to-(0, 1) corner, and
the Index of Union are estimated, respectively. The relative
bias and mean square error (MSE) values of each method
are computed by 𝐸[(𝑐 − 𝑐)/𝑐] and 𝐸[(𝑐 − 𝑐)2], respectively. (𝑐
denotes the true cut-point and 𝑐 denotes the estimated cut-
point by the method.)

In order to estimate the standard deviation and the
confidence interval (CI) for the optimal cut-point, the boot-
strap resampling technique is applied [14]. To calculate the
bootstrap estimate 𝑐𝐵, random sampling with replacement
is used to draw 200 bootstrap samples within each of the
1000 generated samples. Moreover, to construct a 95% CI for
the optimal cut-point, the basic percentile method is applied
by taking the 2.5 and 97.5 percentiles of the 𝑐𝐵 bootstrap
distribution.

The bootstrap estimator of the standard deviation (SD𝐵)
for the estimated cut-point is calculated by taking the stan-
dard deviation of the 200 cut-point estimates. Within each of
the simulation scenarios, the CIs are subsequently evaluated
by computing coverage probability and mean length.

All simulations are done by using R program with the
version of 3.2.0. To determine the estimates for Youden
index and the point closest-to-(0, 1) corner, the pROC library
is used [15]. For defining the estimates of the rest of the
methods, an R code is written by the author and it can be
available upon request.

3.1. Simulation Results. Table 3 shows the results for the
balanced design under normal homoscedastic distributions.
The relative bias values of the previously proposed methods
are similar to the results of Rota and Antolini’s work [11]
except the relative bias of Youden index. In particular for
poor classification accuracy scenarios (i.e., 𝑐opt = 0.25 and
0.52), Youden index has worse performance in the estimation
of the optimal cut-point than their results. However, this
discrepancy is not seen in the comparison of MSEs. That
is, the MSEs of all methods are similar to that of Rota and
Antolini’s work [11].

When comparing the relative bias and MSE values of the
IU method with that of the other methods, it can be easily
seen that the IU method has mostly similar performance
with the point closest-to-(0, 1) corner method and has better
performance than the other methods (i.e., lower relative bias
and lower MSE values).

For the balanced design under normal homoscedastic
distributions, the bootstrap standard deviation, coverage
probability, and mean length of the 95% bootstrap CI for
the cut-point are shown in Table 4. As in Table 3, the results
given in Table 4 are similar to that of Rota andAntolini’s work
[11]. That is, the SD𝐵 of the minimum 𝑃 value approach is
still greater with respect to that of the other methods and
the better classification accuracies provide the narrower 95%
bootstrapCIs.The IUmethod achieves the smallest SD𝐵 value
and the narrowest CIs in most of the scenarios. The coverage
probabilities are close to the nominal level for all methods.
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Table 3: Relative bias and mean square error (MSE) of all methods. The normal homoscedastic balanced scenarioa.

𝑐opt Sample sizes Minimum 𝑃 value Youden index Concordance
probability

Point closest-to-(0-1)
corner Index of Union

𝑛1 = 𝑛2 Relative bias MSE Relative bias MSE Relative bias MSE Relative bias MSE Relative bias MSE

0. 25
50 0.0080 0.5622 0.3088 0.2358 0.0432 0.0696 0.0357 0.0513 0.0306 0.0191
100 0.1303 0.4604 0.3129 0.1675 0.0588 0.0428 0.0526 0.0315 0.0505 0.0116
200 −0.0174 0.3652 0.1510 0.1158 0.0145 0.0259 0.0221 0.0195 0.0262 0.0074

0.52
50 0.0068 0.2307 0.1161 0.1266 0.0066 0.0676 0.0112 0.0427 0.0172 0.0265
100 −0.0314 0.1752 0.0732 0.0783 0.0072 0.0392 0.0084 0.0258 0.0035 0.0201
200 −0.0073 0.1190 0.0438 0.0490 0.0078 0.0242 0.0119 0.0145 0.0109 0.0153

0.84
50 0.0040 0.1263 0.0563 0.0822 −0.0026 0.0557 −0.0038 0.0369 −0.0016 0.0341
100 0.0140 0.0839 0.0476 0.0538 0.0023 0.0372 0.0024 0.0219 0.0020 0.0268
200 −0.0036 0.0631 0.0282 0.0362 0.0039 0.0237 0.0029 0.0128 0.0042 0.0214

1.28
50 0.0011 0.0872 0.0292 0.0676 0.0015 0.0563 0.0032 0.0410 0.0033 0.0467
100 0.0018 0.0558 0.0269 0.0444 0.0025 0.0368 0.0029 0.0245 0.0030 0.0336
200 −0.0028 0.0343 0.0170 0.0248 0.0017 0.0205 0.0013 0.0119 0.0021 0.0200

a𝑋1 ∼ 𝑁 (𝜇1, 1), 𝑋0 ∼ 𝑁 (0, 1), and 𝜇1 was taken as 0.51, 1.05, 1.68, and 2.56, respectively.

The relative bias and MSE results for the unbalanced
design under normal homoscedastic distributions are shown
in Table 5. Since the true cut-point for the minimum 𝑃
value approach depends on the prevalence of the disease
in the sample, different optimal cut-points are used for the
comparisons [11]. The relative bias values of all methods are
similar to those of Rota and Antolini’s work [11], except for
the minimum 𝑃 value approach in the lowest classification
accuracy scenario (i.e., 𝑐opt = 0.25). For this scenario the
relative bias for the minimum 𝑃 value approach is larger than
the bias given in their work. For poor and poor-moderate
classification accuracy (i.e., 𝑐opt = 0.25 and 0.52), the MSE
is the lowest for the IU method, and, for moderate-high and
high classification accuracy (i.e., 𝑐opt = 0.84 and 1.28), both
the point closest-to-(0, 1) corner method and the IU method
get the lowest MSE values.

For the unbalanced design under normal homoscedastic
distributions, the bootstrap standard deviation, coverage
probability, and mean length of the 95% bootstrap CI for the
cut-point are given in Table 6. For this scenario, the lowest
SD𝐵 and mean length of the 95% bootstrap CI values are
obtained by the point closest-to-(0, 1) corner method and the
IU method. As in the comparison of the relative bias and
MSE values of the methods (Table 5), for poor and poor-
moderate classification accuracy (i.e., 𝑐opt = 0.25 and 0.52),
the IUmethod gets the lowest SD𝐵 and mean length, and, for
moderate-high and high classification accuracy (i.e., 𝑐opt =0.84 and 1.28), both the point closest-to-(0, 1) corner in the
ROC plane and the IU method get the lowest values. The
coverage probabilities are close to the nominal level for all
methods.

As it was shown in Rota and Antolini’s work [11], under
a gamma distribution assumption with a balanced design,
the theoretical true cut-points 𝑐min𝑃, 𝑐𝐽, 𝑐CZ, and 𝑐ER are
all different. For all classification accuracy scenarios, the
theoretical true cut-points for the IU method are obtained
based on the idea given in the article of Liu [9] (Figure 2).

The relative bias values of all methods are similar to those of
Rota and Antolini’s work [11]. The MSE gets its lowest value
in the point closest-to-(0, 1) corner and the IUmethod for all
classification accuracy scenarios (Table 7).

For this design (under gammadistributions), the SD𝐵 and
mean length of 95% CI values for the point closest-to-(0, 1)
corner method and the IU method are lower than the other
investigated approaches (Table 8). The coverage probabilities
are close to the nominal level for all methods.

In all simulation scenarios, the IU method shows a
better performance in the estimation of the optimal cut-point
with respect to the other methods. The bootstrap standard
deviation andmean length of the 95% bootstrap CI values for
the IU method are also minimum among all methods. Thus,
for all simulation scenarios, although, in gamma scenarios,
the methods do not lead to a common cut-point, in order
to identify the optimal cut-point, the IU method is a better
alternative than the previous proposed methods.

3.2. Cross-Validation of the Optimal Cut-Point. In order to
evaluate the significance of the optimally selected cut-point,
twofold cross-validation process [16] is used. The procedure
is as follows:

(1) Generating datawith the same properties given in this
manuscript

(2) Applying all methods to the data and estimating cut-
points for all methods

(3) Splitting data into two equal subsets, that is, subset I
and subset II

(4) Applying all methods to subset I and estimating cut-
points for all methods

(5) Assigning each observation in subset II to either one
of two groups by using the cut-point obtained in the
previous step
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Table 9: The true cut-point estimates obtained by all the methods: some of cut-points and the AUC values for pulse pressure, LVEF, plasma
sodium level and heart rate in prediction of mortality.

Pulse pressure LVEF Plasma sodium Heart rate
Point (Se, Sp) Point (Se, Sp) Point (Se, Sp) Point (Se, Sp)

Youden index 30 (83.7, 79.7) 0.264 (62.8, 84.7) 137 (93.0, 48.3) 99 (32.6, 91.5)
ER 30 (83.7, 79.7) 0.295 (76.7, 69.5) 135 (72.1, 66.9) 85 (62.8, 58.5)
Min 𝑃 value 24 (98.3, 53.5) 0.235 (46.5, 94.9) 130 (39.5, 92.4) 115 (16.3, 99.2)
CZ 30 (83.7, 79.7) 0.295 (76.7, 69.5) 135 (72.1, 66.9) 85 (62.8, 58.5)

Some cut-off
points with their
sensitivity and
specificity values

⋅ ⋅ ⋅
24 (53.5, 98.3)
27 (81.4, 79.7)
30 (83.7, 79.7)
34 (83.7, 77.1)
37 (100, 39.0)

. . .

⋅ ⋅ ⋅
0.272 (65.1, 81.4)
0.282 (67.4, 76.3)
0.290 (69.8, 75.4)
0.295 (76.7, 69.5)
0.303 (81.4, 61.0)

⋅ ⋅ ⋅

⋅ ⋅ ⋅
133 (53.5, 82.2)
134 (60.5, 76.3)
135 (72.1, 66.9)
136 (81.4, 57.6)
137 (93.0, 48.3)

⋅ ⋅ ⋅

⋅ ⋅ ⋅
84 (67.4, 53.4)
85 (62.8, 58.5)
86 (58.1, 61.9)
87 (51.2, 68.6)

⋅ ⋅ ⋅
Index of Union 30 (83.7, 79.7) 0.295 (76.7, 69.5) 135 (72.1, 66.9) 85 (62.8, 58.5)
AUC 0.892 0.809 0.777 0.647
Note. Point: cut-point; Se: sensitivity; Sp: specificity; AUC: the area under the curve.

(6) Applying all methods to new subset II and estimating
cut-points for all methods

(7) Assigning each observation in subset I to either one
of two groups by using the cut-point obtained in the
previous step

(8) Applying all methods to the combination of these two
subsets and estimating cut-points for all methods

(9) Taking the difference between the cut-points obtained
at the second step and at the last step

This procedure is applied for 4 scenarios (2 normal and 2
gamma scenarios with the sample size 𝑛0 = 𝑛1 = 50)
given in the manuscript. The results are shown in Figure 1
in SupplementaryMaterial available online at https://doi.org/
10.1155/2017/3762651. According to the results, for each
method, the difference between the optimal cut-points esti-
mated before and after cross-validation is around 0 and the
IU method gets the smallest mean absolute difference in all
four scenarios.

4. Application

A real data obtained from a study in cardiology is used as
an example. Yildiran et al. [12] investigated an association
between pulse pressure and 2-year cardiovascular death in an
entire heart-failure population. They prospectively enrolled
225 (188 male, 37 female) heart-failure patients with NYHA
functional classes I–IV, mean age 56.5 [12].

They recorded detailed histories of the 225 patients,
including demographic characteristics, cardiovascular (CV)
risk factors, and medication usage. The patients were divided
into 4 NYHA classes in accordance with their medical
histories and the findings upon physical examination and
then into 2 groups according to their NYHA class (mild
heart failure [classes I-II] and advanced heart failure [classes
III-IV]). Levels of serum lipids, glucose, high-sensitivity C-
reactive protein, blood urea nitrogen, creatinine, sodium, and

potassium were measured by routine laboratory methods.
Blood pressures were measured by sphygmomanometer in
accordance with published guidelines. Pulse pressure was
calculated as the difference between systolic and diastolic
blood pressure, and the patients were divided accordingly
into 4 quartiles (PP of <35, 35–45, 46–55, or >55mmHg) [12].

They used ROC analysis to define the cut-point values for
pulse pressure, LVEF, plasma sodium value, and heart rate
in predicting CV death. In this analysis, 170 patients who
had all four measurements at the same time (55 patients’
measurements were missing) were included. To get optimal
cut-point values, they used ER approach [12].

SupplementaryWeb-Only Table 1 reports some descrip-
tive statistics of these four measurements. Pulse pressure,
LVEF, and plasma sodium levels are significantly lower in
dead patients (𝑛1 = 43) than in alive patients (𝑛0 = 117)
and heart rate is significantly higher in dead patients than
in alive patients. According to the results of the Shapiro-
Wilk nonparametric normal distribution test, heart rate and
plasma sodium are both normally distributed in both groups,
LVEF is normally distributed in dead patients and is not
normally distributed in alive patients, and pulse pressure is
not normally distributed in both groups. For nonnormal dis-
tributed variables, the distribution of LVEF in alive patients
is left-skewed and the distributions of pulse pressure in both
groups are right-skewed. Since the numbers of patients in two
groups are not close enough, the design is unbalanced and the
ratio between the numbers of patients is similar to the 50 : 100
scenario in the simulation protocol.

In this study, the data obtained from the study by Yildiran
et al. [12] is used and all the methods including the IU
method are applied to this data. The corresponding results
are given in Table 9. The upper part of Table 9 shows the cut-
points obtained by using the previously proposed methods.
To define the cut-point with the IU method, some of
cut-points with their sensitivity and specificity values and
AUC value are given. According to this table, the IU method

https://doi.org/10.1155/2017/3762651
https://doi.org/10.1155/2017/3762651
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prediction of cardiovascular death [12]
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Figure 3: The receiver operator characteristic curves for LVEF, plasma sodium, and heart rate in the prediction of cardiovascular death [12].

gives the same cut-points with the ER method for different
AUC values (Figure 3).

5. Conclusions

Defining the optimal cut-point is very important when a
continuous variable is considered as a diagnostic marker.
Getting optimal classification level depends on the point
chosen for diagnosis. The criteria for optimality can change

according to the aim of the study. However, as a general
rule, minimizing the total misclassification rates is a good
approach. With IU method, since the difference between
sensitivity and specificity values is minimum, this condition
is met most of the time.

According to the results given in the tables, the proposed
IU method can be a better alternative for defining the cut-
point. When the definition of optimal point is stated as the
point that minimizes the misclassification rates or the point
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that equalizes the values of sensitivity and specificity, the
IU method is better than the other methods in most of
the comparison scenarios. This conclusion does not change
with the distribution of biomarker or the homogeneity of
variances of biomarkers. The changes in the sample size
and the AUC values may affect but not alter the interpreta-
tion.

The IU method uses the absolute difference between
diagnostic accuracymeasures andAUCvalue instead of using
the Euclidean distance. The reason behind this idea is to
provide the simplicity in defining the point as optimal. With
the IU method, one can easily identify the optimal cut-point
only by checkingwhether the sensitivity and specificity values
are close enough to AUC value or not. That is, the complex
calculations are not necessary for the IU method.

When the relative bias and MSE values of the IU method
are compared with the previous methods, it is seen that the
IUmethod is better than the others.Thus this method can be
used for defining the optimal cut-point value especially when
the sample sizes of the two groups are equal and the AUC
value is high. (i.e., higher than 0.7).

A common practice is to select a cut-point which defines
two risk groups for a continuously measured biomarker
[16]. A cut-point for a biomarker is meaningful for the
clinicians when it is clinically interpretable and understand-
able. Clinical meaning for a cut-point can be explained by
using its accuracy, that is, true classification rate. Among
all the methods, only two of them, the Youden index and
the concordance probability, are based on the maximization
of this rate. Thus, these methods provide interpretable cut-
points.

Thepoint closest to (0, 1) point on the ROC curvemethod
involves a quadratic term and clinical meaning of this term is
unknown. Despite the lack of clinical meaning, it is shown
in the literature that this method is superior to the other
methods in estimating the true cut-point [11].

The IU method, like the Youden index and the concor-
dance probability, tries tominimize themisclassification rate.
Hence, it also provides an interpretable cut-point. In this
study, it is shown that the IU method performs better than
(or equal to) the point closest to (0, 1) point on the ROC curve
method.Therefore, the use of the IUmethod is advised to get
more interpretable and better optimized cut-point.

The IUmethod provides a cut-pointwhose sensitivity and
specificity are equally high. This means that, in a cut-point
determination process, if sensitivity and specificity are valued
equally, the IUmethod seems to be the best option among all
other methods.

Appendix

Identification of the True Theoretical
Cut-Point for the IU Method under
the Normal Homoscedastic Distribution Case

Let us consider the normal homoscedastic distribution sce-
nario, where𝑋𝐷 ∼ 𝑁 (𝜇𝐷, 𝜎𝐷), 𝐷 = 0, 1 (assuming 𝜇1 > 𝜇0 =0 and 𝜎0 = 𝜎1 = 1). Then, the conditional distribution of the

quantitative variable 𝑋 in group 𝐷 is 𝐹𝐷(𝑐) = 𝑃(𝑋 ≤ 𝑐 | 𝐷)
for𝐷 = 0, 1.

In particular, at cut-point 𝑐, specificity Sp(𝑐) = 𝐹0(𝑐),
and sensitivity Se(𝑐) = 1 − 𝐹1(𝑐). Then the IU function can
be written as one of the following forms (according to the
difference in the absolute value):

(i) IU(𝑐) = 𝐹0(𝑐) − 𝐹1(𝑐) + 1 − 2 ∗ AUC
(ii) IU(𝑐) = 1 − 𝐹0(𝑐) − 𝐹1(𝑐)
(iii) IU(𝑐) = 𝐹0(𝑐) + 𝐹1(𝑐) − 1
(iv) IU(𝑐) = 2 ∗ AUC − 1 − 𝐹0(𝑐) + 𝐹1(𝑐)

That is, IU(𝑐) = 𝛼𝐹0(𝑐) + 𝛽𝐹1(𝑐) + 𝛾 where 𝛼, 𝛽 and 𝛾 are
arbitrary (𝛼, 𝛽 = −1 or 1, −1 ≤ 𝛾 ≤ 1). Thus this formulation
is general form of the Youden Index. So, the cut-point which
optimizes the IU function can be obtained by taking the
first derivative of IU(𝑐), 𝜕IU(𝑐)/𝜕𝑐 = 𝛼𝑓0(𝑐) + 𝛽𝑓1(𝑐), where𝑓𝐷(𝑐) = 𝜕𝐹𝐷(𝑐)/𝜕𝑐 are the normal probability density func-
tions for diseased and nondiseased subjects. Since the normal
distribution is symmetric, 𝑓0 = −𝑓0 for the standard normal
distribution and thus the root of 𝜕IU(𝑐)/𝜕𝑐 = 0 is 𝑐IU = 𝜇1/2.
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